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Abstract: In the study of earnings management, researchers attempt to know the reason managers
manipulate earnings of a company. Some preceding studies have focused on the distribution of reported
earnings, and they treat the evidence of manipulation on earnings as discontinuity (at most cases around zero
earnings) in the distribution function of reported earnings. They used statistical tests to detect the
discontinuity, though, none of the tests they proposed were shown their derivation and examined their
properties. This study tries to find a proper procedure for such kinds of study. In this study, we focus on the
test proposed by Burgstahler and Dichev among tests. The test is designed to test the null hypothesis that has
continuous distribution function against alternatives that have discontinuity in the distribution function at a
certain point by use of empirical distribution (or histogram). The purpose of this study is twofold. First is to
derive the test statistics properly. Second is to examine properties of the test using Monte Carlo simulation.
The results are as follows. First, we can understand that the test is based on estimators of density (i.e.
empirical density) at a certain point for various bin-width and is derived using multinomial distribution.
Second, from the results by Monte Carlo simulation, size and power of the test depends on sample size and
bin-width. Over moderate sample size, the size of the test is almost correct and the test has good power. In
addition, we find that the test is able to detect discontinuity for a small jump in continuous distribution. We
also made simulations for various continuous.distributions, and we have almost same results. Thus, we
conclude that the test is available for various situations.
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1. INTRODUCTION because it is only test which is statistically correct."
The test is designed to test the null hypothesis that
In the study of earnings management, researchers has continuous distribution function against
attempt to know the reason managers manipulate alternatives that have discontinuity in the
earnings of a company. Recent survey by distribution function at a certain point by use of
McNichols [2000] classified studies on earnings empirical distribution (or histogram). The purpose
management into three categories; “those based on of this study is twofold. First is to derive the test
aggregate accruals, those based on specific statistics properly. Second is to examine properties
accruals and those based on the distribution of of the test using Monte Carlo simulation.
earnings after management (p314).” In preceding
studies based on the distribution of reported The layout of this study is as follows. Section 2
earnings, and they treat the evidence of overviews how earning management (discretion)
manipulation (or discretion) on earnings as affects reported earnings. Section 3 sketches the
discontinuity (at most cases, discontinuous around test on discontinuity in distribution by Burgstahler
zero earnings) in the distribution function of and Dichev [1997], and derive its distribution
reported earnings. Although they used statistical under null hypothesis. Section 4 reports properties
tests to detect the discontinuity, none of the tests of the test by Monte Carlo simulations for several
they proposed were shown their derivation and situations. Section 5 gives summary with
examined their properties. This study is a trial to conclusion. :

find a proper procedure for such kinds of study.

In this study, we focus on the test proposed by
Burgstahler and Dichev [1997] among tests

1 For detaijled discussion, see Kan-no, Takao and Takeuchi
[2001].
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2. EARNING MANAGEMENT AND ITS
EFFECT TO EARNING DISTRI-
BUTION

Earning decrease is bad information for investors.
In fact, news of decrease earnings than expected
ones immediately spread markets and make the
stock price falling. As maximizing total (market)
value of the firm is one of tasks postulated on
executives, avoiding decrease earnings or losses is
strong incentives for them.

It is supposed that earning management to avoid
decrease earning or losses is taken place when
earnings become below benchmark value (for
example, zero earnings). This situation can be
modeled as;

. -
r=e ife>e

e’ withs . .

r= ) ife<e
e withl-6

where e and r are true and reported earnings,

respectively. Also e represent benchmark value
of earnings, 4 is probability of managing earnings.

Under this model, even if e¢ follows a continuous
distribution, the distribution of reported earnings
has a jump (i.e. discontinvous) at the benchmark
e . Using this result, we can indirectly find a
discretionary earnings management by detecting
discontinuity in the distribution of reported
earnings.

3. Burgstahler and Dichev [1997] TEST
FOR DETECTING DISCONTINUITY
IN THE DISTRIBUTION FUNCTION

Burgstahler and Dichev [1997] proposed a
statistical test to find earnings management used by
empirical distribution’ (i.e. histogram) of reported
earnings. In this section, I will show a brief sketch
of their test and will give another interpretation.

Let X, (i=1,...,n)are independent random
variables with distribution function F. Suppose
equal spaced points —=cy < < r<C=®
where ¢; -c; ; =hfor j=2,..,k-1. Then, an
empirical frequency in (c;,¢;]

n

Y; = 21{){,. E(c;¢;1} (G =L...,k)

follows multinomial distribution with

2 For the properties of histogram estimate, see Devroye and
Gyorfi [1985].

Pj -P(XE(Cj_l,Cj])”F(cj)"F(cj—l)'
Hence, E(Y;) =np; and var(Y;)=np;(1-p;).

Burgstahler and Dichev [1997] introduced the
‘smoothness’ in the distribution and defined as

(Pja+tpju)/2= p;j (forj=2...k-1) (1)
and formulate test statistics

_ (Pjq+Pjn)2-p;
o \/V“((f’j-l*'ﬁjn)/z‘f’j)
where p; =Y;/nand var((p; + p;,)/2-p;)

T

@

equals

1. 1
;Pj(l‘Pj)*‘E(Pj-] +Pj+1)|(1‘Pj-1 -Pju)
{

1
+;P;(Pj-1 +Pju) 3

Under null hypothesis of (1), T, follows standard
normal distribution’.

Their test uses the notion of ‘smoothness’ in the
probability distribution. However, the relationship
in (1) has another interpretation. If F has a density
(or is continuously differentiable), limit of density
estimates with different bin-width will converge to
same finite value.

h h 2

f’j-1 +ﬁj +ﬁj+1 L Pja tPj+Pjg
3h 3h

- f(cj—l;'cj ) o

Therefore, (1) is hold if Fis continuous and
Burgstahler and Dichev [1997] test, hereafter BD
test, could be interpreted as a test for detecting
discontinuity in a distribution function.

4. MONTE CARLO SIMULATION

4.1 Simulation Setting

To examine properties of the test statistics Tpp,

we will make a Monte Carlo experiment. Sample
data of X, (i =1,...,n) is generated based on

the distribution function such that,
(1-‘6)j:°g(x)dx x<c
F(x) =1 [ s(dx x=c" @)
f_' g x>c

Ld

3
Bahstheler and Dichev [1997] ignores last term in equation

o).
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where g(x), x E(-»,®) is a density distribution.
Equation (4) shows distribution functionF may

have a junip é f g(x)dx at ¢'. In extreme case,

F is continuous (i.e. has a density g(x)) when

6 =0, while F is truncated at ¢ whend=1.In
the experiment, we set seven types of & ; they are
0.0, 0.01, 0.02, 0.05, 0.1, 0.2, and 0.3.

We formulate zp, for three types of bin-width 4 ;
h =0.200,0.100,0.050 where o
error of random variable with pdf g(x). For g(x),
we adopt uniform, normal, and Chi-square density. .

is standard

Each experiment is performed with 1000
replications and for six different sample size »;
they are 50, 100, 500, 1000, 5000, and 10000. We
employ significance level for the test as 5%. All
simulations are made by Gauss for windows (ver.
3.2) with IBM PC compatible PC (Intel Celeron
433 MHz).

4.2  Uniform Case
At the beginning, we examine a primary case in
which sample data is drawn from uniform

distribution, such that X ~U (—\/5,\/5). In this
case 0 =1, and we set the benchmark value as

¢ =-1.

Table 1 shows size and power of BD test at the
benchmark value (-1) for different n, 4, and 6 .
For small sample (#=50 and 100), size of the test is
not correct (in most case greater than 5%). In
addition, the power of the test is poor even in
moderate jump of é = 0.30, i.e. the probability of

¢" =-1lis 0.30x(+/3-1)/4/12 =0.063. On the

other hand, for over moderate sample size
(n = 500), the size become almost correct and the
power become high enough. For large sample such
that (n = 5000), BD test can almost reject the null
hypothesis even for small jump of 8 =0.05, i.e.

probability of ¢* = -1is 0.011. From Table 1, we
can easily find that the power become higher as the
bin-width 4 become small.

Results in Table 1 indicate the power only at the
benchmark value (at the threshold point). In
practiceé, we seldom know information about the
threshold point. Then, we perform BD test around
the benchmark value. Table 2 shows rejection rate
of the null around the benchmark when £=0.10 and
6 =0.10. From this table, except only on two
adjacent points, rejection rates are almost same as
significance level (5%). However, on two most
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adjacent points of the benchmark value, even
though the null is true, there is high tendency to
reject the null. This feature is noteworthy for BD
test.

Table 1 Size and power of BD test
(uniform case; at x=-1).

h
n delta 0.20 0.10 0.05
50 0.00 0.075 0.081 0.030
0.10 0.070 0.061 0.042
0.20 0.115 0.146 0.149
0.30 0.204 0.258 0.329
100 0.00 0.055 0.091 0.092
0.10 0.079 0.096 0.153
0.20 0.187 0.291 0.409
0.30 0.396 0.548 0.687
500 0.00 0.053 0.051 0.049
0.05 0.116 0.152 0.231
0.10 0.282 0.480 0.645
0.20 0.816 0.934 0.990
0.30 0.984 0.999 1.000
1000 0.00 0.056 0.061 0.062
0.05 0.183 0.293 0.466
0.10 0.567 0.765 0.931
0.20 0.984 0.999 0.999
0.30 1.000 1.000 1.000
5000 0.00 0.052 0.046 0.052
0.01 0.060 0.106 0.126
0.02 0.180 0.283 0.444
0.05 0.687 0.902 0.987
0.10 0.994 1.000 1.000
0.20 1.000 1.000 1.000
0.30 1.000 1.000 1.000
10000 0.00 0.041 0.045 0.043
0.01 0.106 0.164 0.255
0.02 0.275 0.534 0.761
0.05 0.938 0.998 1.000
0.10 1.000 1.000 1.000
0.20 1.000 1.000 1.000
0.30 1.000 1.000 1.000

(Note) Some of the results are unlisted.

Table 2 Rejection rate around the benchmark
(uniform case; h=0.10, delta=0.10).

n

midpoint 500 1000 5000 10000
-1.30 0.048 0.046 0.044 0.049
-1.20 0.042 0.047 0.041 0.055
-1.10 0.278 0.413 0.967 1.000
-1.00 0.480 0.765 1.000 1.000
-0.90 0.186 0.289 0.894 0.995
-0.80 0.044 0.062 0.058 0.069
-0.70 0.054 0.060 0.063 0.058

As we have seen in Table 1, the power is quite
poor when sample size is small. One possible
reason for this is estimating denominator of
equation (2). To check this point, we compare the



power using estimated variance with using true
variance (Table 3). Even though power of the test
with true variance is poor for small sample, small
sample bias of ‘the estimator affects the test
considerably amount. For example, when n=50,
the power of the test reduce to about one quarter if
we use the estimated variance.

Table 3 Power comparison with variances
(uniform case; #=0.05, delta=0.10, at x=-1).

BD(est.) BD(true)
n A B A/B
50 0.042 0.187 0.225
100 0.153 0.387 0.395
500 0.645 0.823 0.784
1000 0.932 0.972 0.959

4.3 Normal Case

It seems that the uniform case we have seen in 4.2
is easy to detect discontinuity because its
distribution function has linear function. Next, we
examine a more complicated case such that sample
data is drawn from standard normal distribution.

We also set the benchmark value asc' -v—1,
because the second derivative of the distribution
function F = ®is most steep there.

Table 4 shows size and power of BD test. It is
easily find that the pattern of the simulation results
in Table 4 is quite similar to that in Tablel.

I
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size & power (rejection rate)
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o
)

0 0.02 0.04 0.06 0.08
probability of being -1
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‘— @l — N-500 ==O= N-1000 === N-5000

Figure 1 Power comparison on uniform (U-n) and
Normal (N-n) case; controlled probability jump.

To make fair comparison with uniform case, we
control the probability at benchmark value. For

uniform case, & =0.20 means that probability of
being (-1) is about 0.042. On the other hand, for
normal case & = 0.30 corresponds that probability
of being (-1) is 0.30x ®(-1) = 0.048. Figure 1
represents power functions of uniform case and
normal case against amount of probability jump at

(-1).

Table 4 Size and power of BD test
(normal case; at x=-1).

h
n delta 0.20 0.10 0.05
50 0.00 0.086 0.082 0.015

0.10 0.045 0.052 0.025
0.20 0.083 0.101 0.089
0.30 0.141 0.179 0.201

100 0.00 0.055 0.098 0.062
0.10 0.059 0.091 0.099
0.20 0.135 0.219 0.292
0.30 0.261 0.383 0.521

500 0.00 0.049 0.052 0.071
0.05 0.080 0.105 0.164
0.10 0.203 0.322 0.477
0.20 0.580 0.820 0.934
0.30 0.905 0.983 0.999

1000 0.00 0.055 0.047 0.057
0.05 0.136 0.181 0.327
0.10 0377 0.629 0.812
0.20 0.909 0.983 1.000
0.30 0.999 1.000 1.000

5000 0.00 0.040 0.057 0.067
0.01 0.065 0.104 0.108
0.02 0.116 0.202 0.336
0.05 0.471 0.782 0.945
0.10 0.967 0.999 1.000
0.20 1.000 1.000 1.000
0.30 1.000 1.000 1.000

10000 0.00 0.044 0.052 0.042
0.01 0.081 0.111 0.204
0.02 0.215 0.310 0.567
0.05 0.818 0.968 1.000
0.10 1.000 1.000 1.000
0.20 1.000 1.000 1.000
0.30 1.000 1.000 1.000
(Note) Some of the results are unlisted.

For both cases, means and variances of
distributions from which sample data has drawn are
same. From Figure 1, we can find that two power
functions have almost same form for each sample
size. Thus, we may conclude that BD test seems to
be robust for the distribution by which sample data
is generated. It might be noted that we can
perfectly detect the discontinuity if probability
jump is 0.06 for n=500, 0.04 for n=1000, and 0.02
for n=5000.
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44  Chi-square Case

In this subsection, we examine a case that is more
difficult, i.e. tougher case, than normal case.
Suppose sample data is drawn from Chi-square

distribution. We assume g(x) ~ x*(8). In this
case, distribution mean is eight and distribution
variance is 16. Then, we set & as 0.8, 0.4, and 0.2.

As in other two simulations, we set the benchmark
value as mean minus one standard deviation, that is

to say ¢ =4,

Table 5 shows size and power of BD test. The
pattern of the simulation results in Table 5 is also
quite similar to that in Tablel and Table 4.

Table § Size and power of BD test
(Chi-square case; at x=4).

h
n delta 0.8 0.4 0.2
50 0.00 0.063 0.083 0.052

0.10 0.059 0.060 0.050
0.20 0.071 0.084 0.089
0.30 0.102 0.151 0.139

100 0.00 0.057 0.080 0.104
0.10 0.059 0.078 0.098
0.20 0.107 0.144 0.206
0.30 0.184 0.257 0.420

500 0.00 0.052 0.044 0.067
0.05 0.093 0.090 0.107
0.10 0.170 0.229 0.337
0.20 0.474 0.648 0.853
0.30 0.793 0.921 0.988

1000 0.00 0.053 0.048 0.044
0.05 0.125 0.133 0.209
0.10 0.319 0.393 0.626
0.20 0.769 0.913 0.985
0.30 0.977 0.998 1.000

5000 0.00 0.070 0.047 0.054
0.01 0.142 0.083 0.084
0.02 0.217 0.180 0.206
0.05 0.536 0.570 0.814
0.10 0.934 0.987 0.998
0.20 1.000 1.000 1.000
0.30 1.000 1.000 1.000

10000 0.00 0.127 0.058 0.047
0.01 0.237 0.084 0.120
0.02 0.359 0.256 0.421
0.05 0.833 0.864 0.981
0.10 0.999 1.000 1.000
0.20 1.000 1.000 1.000
0.30 1.000 1.000 1.000
(Note) Some of the results are unlisted.

However, there are two exceptions. First, for n=50
and 6 =0.30, the power of A=0.2, 0.139, is less
than that of #=0.4, 0.151. A possible reason for
this is to adopt narrow bin-width. By using narrow

bin-width relatively to small sample size, p j might

become poor estimation. As a result, estimation on
denominator in (2) becomes poor, then, it could
not rejected so often. The fact that the power of
h=0.4 is 0.299 and that of £=0.2 is 0.401 when we
use true variances may confirm this point.

Second, for n=10000, size is far from true value,
5%, regardless large sample size. In this case,
what bin-width is too large to distinguish
continuous increment and jump is one plausible
explanation.

5. SUMMARY AND CONCLUSION

We can summarize the results as follows. First, we
can understand that the test is based on estimators
of density (i.e. empirical density) at a certain point
for various bin-width and is derived using
multinomial distribution. Second, from the results
by Monte Carlo simulation, size and power of the
test depends on sample size and bin-width. Over
moderate sample size, the size of the test is almost
correct and the test has good power. In addition,
we find that the test is able to detect discontinuity
for a small jump in continuous distribution. We
also made simulations for various continuous
distributions, and we have almost same results.
Thus, we conclude that the test is available for
various situations
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